Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Ground GNN with Hyperbolic Geometry

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.

Hyperbolic Graph Neural Networks

Graph neural networks can be interpreted as performing message passing between nodes (Gilmer et al., 2017).

Main Idea: We extend graph neural networks to operate on Riemannian manifolds with differentiable trainable parameters.